From 1 - 10 / 14
  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. The dataset has been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The Cumberland Plain flux station is located in a dry sclerophyll forest. The Cumberland Plain Woodland is now an endangered ecological community that encompasses distinct groupings of plants growing on clayey soils. The canopy is dominated by <em>Eucalyptus moluccana</em> and <em>Eucalyptus fibrosa</em>, which host an expanding population of mistletoe. Average canopy height is 23m, the elevation of the site is 20m and mean annual precipitation is 800mm. <br /> <br />Fluxes of water vapour, carbon dioxide and heat are quantified with the open-path eddy flux technique from a 30 m tall mast. Additional measurements above the canopy include temperature, humidity, wind speed and direction, rainfall, incoming and reflected shortwave and longwave radiation and net, diffuse and direct radiation and the photochemical reflectance index. In addition, profiles of humidity and CO2 are measured at eight levels within the canopy, as well as measurements of soil moisture content, soil heat fluxes, soil temperature, and 10-hr fuel moisture dynamics. In addition, regular monitoring of understory species abundance, mistletoe infection, leaf area index and litterfall are also performed. <br />For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/cumberland-plain-supersite/ . <br /><br />

  • Categories    

    This dataset consists of measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in dry sclerophyll forest at Cumberland Plain using eddy covariance techniques. The eddy covariance data collected in 2012-2013 includes measurements of turbulent fluxes but not the storage flux of CO2, and the micrometeorological data does not include soil moisture or soil temperature recordings. Beginning in January, 2014, a canopy profile system was implemented, allowing for calculation of the storage term, which is added to the turbulent flux of CO2 to calculate the net ecosystem exchange accurately in records from 2014 onwards. Prior to 2014, the net ecosystem exchange includes only the turbulent flux, and no soil moisture or soil temperature data are available.<br /> <br /> The Cumberland Plain flux station is located in a dry sclerophyll forest. The Cumberland Plain Woodland is now an endangered ecological community that encompasses distinct groupings of plants growing on clayey soils. The canopy is dominated by <em>Eucalyptus moluccana</em> and <em>Eucalyptus fibrosa</em>, which host an expanding population of mistletoe. Average canopy height is 23m, the elevation of the site is 20m and mean annual precipitation is 800mm. <br /> <br />Fluxes of water vapour, carbon dioxide and heat are quantified with the open-path eddy flux technique from a 30 m tall mast. Additional measurements above the canopy include temperature, humidity, wind speed and direction, rainfall, incoming and reflected shortwave and longwave radiation and net, diffuse and direct radiation and the photochemical reflectance index. In addition, profiles of humidity and CO2 are measured at eight levels within the canopy, as well as measurements of soil moisture content, soil heat fluxes, soil temperature, and 10-hr fuel moisture dynamics. In addition, regular monitoring of understory species abundance, mistletoe infection, leaf area index and litterfall are also performed. <br />For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/cumberland-plain-supersite/ . <br /><br />This data is also available at http://data.ozflux.org.au .

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.15) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>The Cumberland Plain flux station is located in a dry sclerophyll forest. The Cumberland Plain Woodland is now an endangered ecological community that encompasses distinct groupings of plants growing on clayey soils. The canopy is dominated by <em>Eucalyptus moluccana</em> and <em>Eucalyptus fibrosa</em>, which host an expanding population of mistletoe. Average canopy height is 23&nbsp;m, the elevation of the site is 20&nbsp;m and mean annual precipitation is 800&nbsp;mm. Fluxes of water vapour, carbon dioxide and heat are quantified with the open-path eddy flux technique from a 30&nbsp;m tall mast. Additional measurements above the canopy include temperature, humidity, wind speed and direction, rainfall, incoming and reflected shortwave and longwave radiation and net, diffuse and direct radiation and the photochemical reflectance index. In addition, profiles of humidity and CO<sub>2</sub> are measured at eight levels within the canopy, as well as measurements of soil moisture content, soil heat fluxes, soil temperature, and 10&nbsp;hr fuel moisture dynamics. In addition, regular monitoring of understory species abundance, mistletoe infection, leaf area index and litterfall are also performed.

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. The dataset has been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The Cumberland Plain flux station is located in a dry sclerophyll forest. The Cumberland Plain Woodland is now an endangered ecological community that encompasses distinct groupings of plants growing on clayey soils. The canopy is dominated by <em>Eucalyptus moluccana</em> and <em>Eucalyptus fibrosa</em>, which host an expanding population of mistletoe. Average canopy height is 23m, the elevation of the site is 20m and mean annual precipitation is 800mm. <br /> <br />Fluxes of water vapour, carbon dioxide and heat are quantified with the open-path eddy flux technique from a 30 m tall mast. Additional measurements above the canopy include temperature, humidity, wind speed and direction, rainfall, incoming and reflected shortwave and longwave radiation and net, diffuse and direct radiation and the photochemical reflectance index. In addition, profiles of humidity and CO2 are measured at eight levels within the canopy, as well as measurements of soil moisture content, soil heat fluxes, soil temperature, and 10-hr fuel moisture dynamics. In addition, regular monitoring of understory species abundance, mistletoe infection, leaf area index and litterfall are also performed. <br />For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/cumberland-plain-supersite/ . <br /><br />

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>The Cumberland Plain flux station is located in a dry sclerophyll forest. The Cumberland Plain Woodland is now an endangered ecological community that encompasses distinct groupings of plants growing on clayey soils. The canopy is dominated by <em>Eucalyptus moluccana</em> and <em>Eucalyptus fibrosa</em>, which host an expanding population of mistletoe. Average canopy height is 23&nbsp;m, the elevation of the site is 20&nbsp;m and mean annual precipitation is 800&nbsp;mm. Fluxes of water vapour, carbon dioxide and heat are quantified with the open-path eddy flux technique from a 30&nbsp;m tall mast. Additional measurements above the canopy include temperature, humidity, wind speed and direction, rainfall, incoming and reflected shortwave and longwave radiation and net, diffuse and direct radiation and the photochemical reflectance index. In addition, profiles of humidity and CO<sub>2</sub> are measured at eight levels within the canopy, as well as measurements of soil moisture content, soil heat fluxes, soil temperature, and 10&nbsp;hr fuel moisture dynamics. In addition, regular monitoring of understory species abundance, mistletoe infection, leaf area index and litterfall are also performed.

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.5.0) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br><br> The Loxton site was established in August 2008 and decommissioned in June 2009. The orchard was divided into 10&nbsp;ha blocks (200&nbsp;m by 500&nbsp;m with the long axis aligned north–south) and the flux tower was situated at 34.47035&nbsp;°S and 140.65512&nbsp;°E near the middle of the northern half of a block of trees. The topography of the site was slightly undulating and the area around the tower had a slope of less than 1.5&nbsp;°. The orchard was planted in 2000 with an inter-row spacing of 7&nbsp;m and a within row spacing of 5&nbsp;m. Tree height in August 2008 was 5.5&nbsp;m. The study block consists of producers, Nonpareil, planted every other row, and pollinators planted as alternating rows of Carmel, Carmel and Peerless, and Carmel and Price. All varieties were planted on Nemaguard rootstock. All but 31&nbsp;ha of the surrounding orchard was planted between 1999 and 2002. Nutrients were applied via fertigation. Dosing occurred between September and November and in April with KNO<sub>3</sub>, Urea, KCl, and NH<sub>4</sub>NO<sub>3</sub> applied at annual rates of 551, 484, 647, and 113&nbsp;kg/ha, respectively. The growth of ground cover along the tree line was suppressed with herbicides throughout the year. Growth in the mid-row began in late winter and persisted until herbicide application in late November. The research was supported with funds from the National Action Plan for Salinity via the Centre for Natural Resource Management, and the River Murray Levy.

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The Loxton site was established in August 2008 and decommissioned in June 2009. The orchard was divided into 10 ha blocks (200 m by 500 m with the long axis aligned north–south) and the flux tower was situated at 34.47035°S and 140.65512°E near the middle of the northern half of a block of trees. The topography of the site was slightly undulating and the area around the tower had a slope of less than 1.5°. The orchard was planted in 2000 with an inter-row spacing of 7 m and a within row spacing of 5 m. Tree height in August 2008 was 5.5 m. The study block consists of producers, Nonpareil, planted every other row, and pollinators planted as alternating rows of Carmel, Carmel and Peerless, and Carmel and Price. All varieties were planted on Nemaguard rootstock. All but 31 ha of the surrounding orchard was planted between 1999 and 2002. Nutrients were applied via fertigation. Dosing occurred between September and November and in April with KNO3, Urea, KCl, and NH4NO3 applied at annual rates of 551, 484, 647, and 113 kg/ha, respectively. The growth of ground cover along the tree line was suppressed with herbicides throughout the year. Growth in the mid-row began in late winter and persisted until herbicide application in late November. <br> The research was supported with funds from the National Action Plan for Salinity via the Centre for Natural Resource Management, and the River Murray Levy.<br />This data is also available at http://data.ozflux.org.au . <br>

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.7) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br><br> The Loxton site was established in August 2008 and decommissioned in June 2009. The orchard was divided into 10&nbsp;ha blocks (200&nbsp;m by 500&nbsp;m with the long axis aligned north–south) and the flux tower was situated at 34.47035&nbsp;°S and 140.65512&nbsp;°E near the middle of the northern half of a block of trees. The topography of the site was slightly undulating and the area around the tower had a slope of less than 1.5&nbsp;°. The orchard was planted in 2000 with an inter-row spacing of 7&nbsp;m and a within row spacing of 5&nbsp;m. Tree height in August 2008 was 5.5&nbsp;m. The study block consists of producers, Nonpareil, planted every other row, and pollinators planted as alternating rows of Carmel, Carmel and Peerless, and Carmel and Price. All varieties were planted on Nemaguard rootstock. All but 31&nbsp;ha of the surrounding orchard was planted between 1999 and 2002. Nutrients were applied via fertigation. Dosing occurred between September and November and in April with KNO<sub>3</sub>, Urea, KCl, and NH<sub>4</sub>NO<sub>3</sub> applied at annual rates of 551, 484, 647, and 113&nbsp;kg/ha, respectively. The growth of ground cover along the tree line was suppressed with herbicides throughout the year. Growth in the mid-row began in late winter and persisted until herbicide application in late November. The research was supported with funds from the National Action Plan for Salinity via the Centre for Natural Resource Management, and the River Murray Levy.

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.5.0) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>The Cumberland Plain flux station is located in a dry sclerophyll forest. The Cumberland Plain Woodland is now an endangered ecological community that encompasses distinct groupings of plants growing on clayey soils. The canopy is dominated by <em>Eucalyptus moluccana</em> and <em>Eucalyptus fibrosa</em>, which host an expanding population of mistletoe. Average canopy height is 23&nbsp;m, the elevation of the site is 20&nbsp;m and mean annual precipitation is 800&nbsp;mm. Fluxes of water vapour, carbon dioxide and heat are quantified with the open-path eddy flux technique from a 30&nbsp;m tall mast. Additional measurements above the canopy include temperature, humidity, wind speed and direction, rainfall, incoming and reflected shortwave and longwave radiation and net, diffuse and direct radiation and the photochemical reflectance index. In addition, profiles of humidity and CO<sub>2</sub> are measured at eight levels within the canopy, as well as measurements of soil moisture content, soil heat fluxes, soil temperature, and 10&nbsp;hr fuel moisture dynamics. In addition, regular monitoring of understory species abundance, mistletoe infection, leaf area index and litterfall are also performed.

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.7) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>The Cumberland Plain flux station is located in a dry sclerophyll forest. The Cumberland Plain Woodland is now an endangered ecological community that encompasses distinct groupings of plants growing on clayey soils. The canopy is dominated by <em>Eucalyptus moluccana</em> and <em>Eucalyptus fibrosa</em>, which host an expanding population of mistletoe. Average canopy height is 23&nbsp;m, the elevation of the site is 20&nbsp;m and mean annual precipitation is 800&nbsp;mm. Fluxes of water vapour, carbon dioxide and heat are quantified with the open-path eddy flux technique from a 30&nbsp;m tall mast. Additional measurements above the canopy include temperature, humidity, wind speed and direction, rainfall, incoming and reflected shortwave and longwave radiation and net, diffuse and direct radiation and the photochemical reflectance index. In addition, profiles of humidity and CO<sub>2</sub> are measured at eight levels within the canopy, as well as measurements of soil moisture content, soil heat fluxes, soil temperature, and 10&nbsp;hr fuel moisture dynamics. In addition, regular monitoring of understory species abundance, mistletoe infection, leaf area index and litterfall are also performed.